US009177352B2

(54)

(71)

(72)

(73)

")
@
(22)

(65)

(1)

(52)

(58)

a2 United States Patent 10) Patent No.: US 9,177,352 B2
Shah et al. (45) Date of Patent: Nov. 3, 2015
SELECTIVE MULTITHREADING FOR (56) References Cited
SPORADIC PROCESSOR WORKLOADS
U.S. PATENT DOCUMENTS
Applicant: Qualcomm Innovation Center, Inc.,]]
San Diego, CA (US) 2008/0276056 Al* 11/2008 Giacomoni GO6F 9/544
’ 711/159
*
Inventors: Premal Shah, San Diego, CA (US); 2008/0310555 AL* 122008 Kee oovvorii G06F32/55/gz‘(7)
Omprakash Dhyade, San Diego, CA 2012/0060161 AL* 3/2012 Joungco...... GOGF 9/5038
(US) 718/102
Assignee: Qualcomm Innovation Center, Inc., * cited by examiner
San Diego, CA (US)
Primary Examiner — Kee M Tung
Notice: Subject to any disclaimer, the term of this Assistant Examiner — Frank Chen
%)Ja.tse.né. IISSZ)((SIL??Q? dz(§3£5ted under 35 (74) Attorney, Agent, or Firm — Neugeboren O’Dowd PC
Appl. No.: 14/149,701 7 ABSTRACT
Systems and methods for processing user-interface anima-
Filed: Jan. 7,2014 tions are disclosed. The method may include processing a first
. L. frame of a user-interface animation with a first processing
Prior Publication Data core, monitoring a processing time of the first frame of the
US 2015/0193959 A1 Jul. 9, 2015 user-interface animation relative to a first synchronization
pulse, and processing, if the elapsed processing time exceeds
Int. CL. athreshold, a first portion of the user-interface animation with
GO6T 13/00 (2011.01) the first processing core and a second portion of the user-
GO6T 1720 (2006.01) interface animation with a second processing core. Process-
GOG6F 3/00 (2006.01) ing of a next frame of the user-interface animation may be
US. Cl. initiated with the first processing core while the second pro-
CPC ... GO6T 1/20 (2013.01); GO6F 3/00 (2013.01) cessing core is processing the second portion of the user-
Field of Classification Search interface animation.
None
See application file for complete search history. 19 Claims, 5 Drawing Sheets
| | | |
| | | |
V-Sync Pulse V-Sync Pulse V-8ync Pulse V-Sync Pulse
| | | |
Display + T v +
HW 0 A ! A 2 " h
t ms:
k—t threshold—>
Core 1 2 | 0 | 1 |\/‘348 2
S
Core 2 344 | o |. ~346
CPU Workload for Frame 0%
split in two threads
GPU | 2 | [o]] 1 B
TIME >

US 9,177,352 B2

Sheet 1 of 5

Nov. 3, 2015

U.S. Patent

12y’
[oAST alempleH

Zcl
ELERNENIE)Y

ocl
[9AST Jasn

L "Old

0ol

o9 ‘Ofj opny ¢¢F

JOBPIA ‘sjesaydiiad ‘Q/| Jesn ‘eoeleiu|

i

HomiaN ‘Alowspy ‘Josssd0.d puegssed | josssooiy

9100 210D
puooag| | 1sii4 N

TN9LL

4L T

ort
Buinpsyog |sulsy

"

$910D

A —_
801
EIREN!
— y
¢l uaising 311 uonoaed
PEOMJOA PEOIOAA o0t
91T INMH seue.ar

— —— 20l

Jasmolg YOL| |jewg ol suoieolddy

U.S. Patent Nov. 3, 2015 Sheet 2 of 5 US 9,177,352 B2

240
| | |
| | I |
V-Sync Pulse V-Sync Pulse V-Sync Pulse V-Sync Pulse
| | I |
+ + + +

Display
17 LR G A G G R (D

Core1| 2 50 | :lz
GPU | 2 [] 44 |Eo | | 1 | []2]

U.S. Patent Nov. 3, 2015 Sheet 3 of 5 US 9,177,352 B2

V-8ync Pulse V-Sync Pulse V-Sync Pulse V-8ync Pulse
| | | |
HW T\ 0 LI\ 1 LT 2 ST\ 0 ZTv 1
t ms:
l6—t threshold—>

Core1| 2 0 | 1 |~r~348 2 |
S
Core 2 344 | ol |. ~346

CPU Worklood for Frame O
split in two threads

GPU [z [] Lo o] [z]

TIME >

FIG. 3

U.S. Patent Nov. 3, 2015 Sheet 4 of 5 US 9,177,352 B2

(- N

Process of a frame of a user-interface animation
workload with a first processor core <
402

!

Monitor the processing time of the frame workload
—P relative to a VSYNC cycle

404

Yes | Process a second portion of
the workload with a second
processor core
410

Elapsed processing time
time for the Ul workload >
time threshold?

406

No

Processing complete?

Begin prepare stage of next frame
412

!

< Return)

FIG. 4

U.S. Patent Nov. 3, 2015 Sheet 5 of 5 US 9,177,352 B2

12 Display

Camera
Actuator :|
510

+-522

Nonvolatile
Memory

RAM

(@]
N
~

Processing
Component 1

- Tx/Rx

Processing
Component N

Processing 26 Tx/Rx

o1
N
[o=]

FIG. 5

US 9,177,352 B2

1
SELECTIVE MULTITHREADING FOR
SPORADIC PROCESSOR WORKLOADS

BACKGROUND

1. Field

The present disclosed embodiments relate generally to
computing devices, and more specifically to multithreading
on processors of computing devices.

2. Background

Computing devices including devices such as smart-
phones, tablet computers, gaming devices, and laptop com-
puters are now ubiquitous. These computing devices are now
capable of running a variety of applications (also referred to
as “apps”) and many of these devices include multiple pro-
cessors to process tasks that are associated with apps. In many
instances, multiple processors are integrated as a collection of
processor cores within a single functional subsystem. It is
known that the processing load on a mobile device may be
apportioned to the multiple cores. Some sophisticated
devices, for example, have multiple core processors that may
be operated asynchronously at different frequencies. On these
types of devices, the amount of work that is performed on
each processor may be monitored and controlled by a CPU
governor to meet workloads.

A user’s experience on a computing device is generally
dictated by how smooth the user interface (“UI””) animation
runs on the device. UT animations on Android-based devices,
application scrolls (e.g., browser scroll, email scroll, home
launcher scrolls etc.), and the visually attractive animations
that are displayed in connection with application launches
present an important use-case of periodic workload on the
CPU that is also sporadic in nature. Usually a performance
benchmark places fixed-sized loads on the CPU, which
allows the system to latch on the right clock frequency when
running the benchmark. If a particular processing core has a
heavy load, the frequency of that processing core may be
increased. If a processing core has a relatively low load or is
idle, the frequency of that core may be decreased (e.g., to
reduce power consumption).

The Linux operating system for example, may use an on
demand governor, which monitors the workload on each pro-
cessor and adjusts the corresponding clock frequency based
on the workload. The adjustment of the clock frequency may
be heuristic based and may provide power benefits when
operating properly. This approach to adjusting the CPU clock
frequency works well if the workload is overall consistent,
which is usually the case for many of the typical benchmarks.
But the on demand governor does not scale well when the
periodic workload also becomes sporadic because there is no
consistent history associated with the sporadic workload.

As a consequence, sporadic workloads are a challenge for
the governor, and to finish a periodic workload in a timely
manner, a known (and non-optimal system solution) is to run
a processor locked at higher clock frequency for user-inter-
face workloads. Similarly, other CPU governors (e.g., the
Interactive governor) respond more aggressively and increase
processor clock frequencies when servicing sporadic/interac-
tive workloads. These governor-based approaches that
increase processor clock frequencies adversely impact power
consumption, they are merely “best effort,” and these gover-
nor-based approaches are not deterministic with respect to
changing workloads. In short, existing approaches to han-
dling sporadic workloads either result in “stuttering,” unde-
sirable power consumption, and/or poor application perfor-
mance.

10

15

20

25

30

35

40

45

50

55

60

65

2
SUMMARY

Aspects of the present invention may be characterized as a
method for processing user-interface animations on a com-
puting device. The method may include processing a first
frame of a user-interface animation with a first processing
core and monitoring a processing time of the first frame ofthe
user-interface animation relative to a first synchronization
pulse. If the elapsed processing time exceeds a threshold, a
first portion of the user-interface animation is processed with
the first processing core and a second portion of the user-
interface animation is processed with a second processing
core. Processing of a next frame of the user-interface anima-
tion is then initiated at substantially the same time as a second
synchronization pulse while the second processing core is
processing the second portion of the first frame.

Other aspects may be characterized as computing device
that includes means for processing a first frame of a user-
interface animation with a first processing core and means for
monitoring a processing time of the first frame of the user-
interface animation relative to a first synchronization pulse.
The computing device also includes means for processing, if
the elapsed processing time exceeds a threshold, a first por-
tion of the user-interface animation with the first processing
core and means for processing a second portion of the user-
interface animation with a second processing core. In addi-
tion, the computing device includes means for initiating, at
substantially a same time as a second synchronization pulse,
processing of a next frame of the user-interface animation
with the first processing core while the second processing
core is processing the second portion of the user-interface
animation.

Yet another aspect may be characterized as a non-transi-
tory, tangible processor readable storage medium, encoded
with processor readable instructions to perform a method that
includes processing a first frame of a user-interface animation
with a first processing core and monitoring a processing time
of the first frame of the user-interface animation relative to a
first synchronization pulse. If the elapsed processing time
exceeds a threshold, a first portion of the user-interface ani-
mation is processed with the first processing core and a sec-
ond portion of the user-interface animation is processed with
a second processing core. Processing of a next frame of the
user-interface animation is then initiated at substantially a
same time as a second synchronization pulse while the second
processing core is processing the second portion of the user-
interface animation.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram illustrating components of a
computing system.

FIG. 2 is a timing diagram depicting the processing of a
user interface animation with a single processor.

FIG. 3 is a timing diagram depicting the processing of a
user-interface animation with two processors.

FIG. 4 is a flowchart depicting a method that may be
traversed in connection with several embodiments.

FIG. 5 is a block diagram depicting physical structures that
may be utilized in connection with implementing the embodi-
ments disclosed herein.

DETAILED DESCRIPTION

The word “exemplary” is used herein to mean “serving as
an example, instance, or illustration” Any embodiment

US 9,177,352 B2

3

described herein as “exemplary” is not necessarily to be con-
strued as preferred or advantageous over other embodiments.

Several embodiments disclosed herein provide more opti-
mal handling of sporadic workloads for Ul animations to
improve the user experience. As discussed herein, many of
these embodiments do not rely on system CPU governors to
improve the user experience. Referring to FI1G. 1 for example,
it is a block diagram illustrating components of a computing
system 100 (also referred to herein as a computing device
100). The block diagram includes applications 102 (e.g., an
email application 103 and web browser 104) at the highest
level of abstraction and hardware such as the applications
processor 114 (which includes a plurality of processing cores
116) and a graphics processing unit (“GPU”) 115 at the low-
est level. As depicted, libraries 106 in this embodiment
include a hardware user interface library (“HWUI”) 116 that
generally operates to render user-interfaces (e.g., using
OpenGL), and the HWUI 116 in this embodiment includes a
novel workload detection component 118 and a novel work-
load division component 120 that is in communication with a
kernel scheduling component 110. Although the specific
embodiment depicted in FIG. 1 depicts multiple processor
cores 116 within a processor 114, it should be recognized that
other embodiments include a plurality of processors that are
not integrated within the processor 114. As a consequence,
the operation of multiple processors is described herein in the
context of both multiple processor cores 116, and more gen-
erally, multiple processors, which may include processor
cores and discrete processors.

The one or more applications 102 may be realized by a
variety of applications that operate via, or run on, the proces-
sor 114. For example, the one or more applications 102 may
include an email application 103 (e.g., Gmail), a web browser
103 and associated plug-ins, entertainment applications (e.g.,
video games, video players), productivity applications (e.g.,
word processing, spreadsheet, publishing applications, video
editing, photo editing applications), core applications (e.g.,
phone, contacts), and augmented reality applications.

As one of ordinary skill in the art will appreciate, the
user-space 130 and kernel-space 132 components depicted in
FIG. 1 may be realized by hardware in connection with pro-
cessor-executable code stored in a non-transitory tangible
processor readable medium such as nonvolatile memory, and
can be executed by processor 114.

In general, the workload detection component 118 oper-
ates to detect how long a frame of animation is taking to
process (e.g., on a first core of the processor 114), and if the
processing time that elapses exceeds a threshold, the work-
load detection component 118 signals the workload division
component 120 to divide the workload. More specifically, the
workload division component 120 will prompt the kernel
scheduling component 110 to divide the workload so that a
prepare-stage of animation is processed by the first core and
a render-stage of animation to executed by a second core of
the processor 114. In this way, the prepare-stage may
promptly begin in connection with a synchronization pulse to
remove undesirable stuttering as discussed below.

In many variations of the embodiment depicted in FIG. 1,
the workload detection component 118 and workload divi-
sion component 120 are additional constructs that are added
to the Android mobile platform, which may be utilized to
realize the application and library framework of the depicted
computing device 100. As depicted in FIG. 2, Ul animations
on the Android platform are time-based with fixed periodicity
controlled by the display panel refresh rate—depicted by a
synchronization pulse (VSYNC pulse). At each VSYNC
pulse, the UI frame workload is started and it must complete

20

25

30

40

45

55

4

before the next VSYNC pulse to maintain smooth frame-
displacement (e.g., Ul element movement on the screen from
frame n to frame n+1) throughout the time of the animation.
Ideally, the feet-per-second of the UI animations is equal to
the display panel refresh rate, but as depicted in FIG. 2, when
the Ul workload 244 for frame 0 does not complete by the
time VSYNC pulse 240 occurs, frame number 1 renders with
an additional displacement 242 of d milliseconds.

In connection with the Android platform, the processor 114
manages the Ul elements (Android View Hierarchy) and pre-
pares rendering work (e.g., using OpenGLES) for the GPU to
finish. As is known to those of skill in the art, the Ul workload
on the Android platform may be split between the processor
114 and the GPU 115 (Android uses the GPU to do the Ul
rendering as an optimization). Based upon how the applica-
tions 102 are designed, both the processor 114 and the GPU
115 workloads can vary during the course of an animation
sequence. Under ideal conditions, it is desirable for the appli-
cation to be double buftered such that both processor 114 and
the GPU 115 finish its workload in the current VSYNC cycle
to show the rendered frame in the very next VSYNC cycle on
the display.

Assuming the computing device 100 operates at a 60 Hz
industry standard display refresh rate, the Ul workload (pro-
cessor 114+GPU 115) will have to be completed within 16.66
ms for a double-buffered solution. In a soft real time system
(e.g., utilizing the Android platform) this is often not achiev-
able, so in some modes of operation, triple buffering is uti-
lized to allow for an extra frame of latency on the display and
hence allow the workload (processor 114+GPU 115) to com-
plete within 33.33 ms. But to show smooth frame-displace-
ment on the screen, the processor 114 workload must start at
the VSYNC pulse and complete before the next VSYNC
pulse, but the processing performed by the GPU 115 can
extend into the next VSYNC cycle.

Regardless of whether double-buffering or the more con-
servative triple-buffering is utilized, the processor 114 work-
load (albeit sporadic) must start at the VSYNC pulse and
finish before the next VSYNC pulse to get smooth time based
animations. Due to the sporadic nature of the processor 114
workload, the CPU governor often does not respond in time to
increase the clock frequencies of the cores 116 when the
workload becomes high. This results in a non-uniform dis-
placement from frame to frame on the screen in the Ul ani-
mation sequence. This is one of the types of Ul stutter preva-
lent in time-based animations, which several embodiments
discussed further herein avoid.

More specifically, embodiments disclosed herein address
issues related to periodic workloads, which are also sporadic
in nature with no specific history. Applicant has found for
example, that only a portion of the workload needs to be
absolutely periodic and a second part can be allowed some
extra latency. As a consequence, the workload can be split into
two distinct parts and run in two corresponding separate
threads on the multicore processor 114. Assuming, for
example, the periodic internal cycle for VSYNC is t millisec-
onds, the first part of the workload (which needs fixed peri-
odicity) can at times, overlap with the second part of a previ-
ous workload in a given periodic interval of t milliseconds.

In addition, the workload may be selectively split so that
the processing load on the computing device 100, as a whole,
is handled more optimally. In some embodiments for
example, if the processing of the workload extends beyond a
certain time threshold (e.g., t/2 milliseconds) in a given peri-
odic interval of t ms, the second part of the workload is split
into a separate worker thread. This selective division of the

US 9,177,352 B2

5

workload avoids redundant multithreading overhead, and the
workload splitting threshold can be tuned based on the par-
ticular use-case.

Referring next to FIG. 3, it depicts the splitting of the
processor 114 workload into two threads. More specifically,
FIG. 3 depicts an Android-based Ul animation workload for
a frame that is split into two distinct parts on the processor
114: 1) a prepare stage 344 and 2) a rendering stage 346. The
prepare stage 344 includes managing the Ul elements View
Hierarchy; frame-to-frame displacement calculation; and
recording graphics library (“GL”) commands for rendering
the current frame. The rendering stage 346 includes executing
the recorded GL commands.

On a deferred GPU rendering architecture (e.g., an Adreno
GPU rendering architecture) the processor 114 may pack the
GL commands into a command buffer during the rendering
stage 346, which is executed later by the GPU 115.

While referring to FIG. 3, simultaneous reference is made
to FIG. 4, which is a flowchart 400 depicting an exemplary
method that may be traversed in connection with the embodi-
ments disclosed herein. As shown in FIG. 4, when a frame of
UT animation is initially processed, it is processed with a first
processor core (Block 402), and the processing time for the
frame is monitored relative to a synchronization (e.g.,
VSYNC) cycle (Block 404). As depicted, if an elapsed pro-
cessing time for the workload has not exceeded a time thresh-
old (Block 406) and the processing of the workload is not
complete (Block 408), the processing of the workload con-
tinues until either the time threshold is exceeded (Block 406)
or processing the workload is complete (Block 408).

If the time threshold has been exceeded (Block 406), then
a second portion of the workload, the rendering stage 346, is
carried out with a second processing core (Block 410). As
depicted, while the rendering stage 346 is occurring, the
prepare stage 348 for the next frame is initiated substantially
co-currently with the VSYNC pulse so that the prepare stage
348 for the next frame begins while the render stage 346 for
the previous frame is still in progress. As depicted, the prepare
stage 344 and rendering stage 346 are executed in sequence
for a given frame, but they are distinct in that the prepare stage
of frame n+1 may overlap with the rendering stage of previ-
ous frame n. In addition, the prepare stages 344, 348 are
carried out on separate cores from the render stage 346; thus,
UT workload is effectively multithreaded in parallel.

The condition that the elapsed processing time exceed a
threshold (Block 406) is implemented because multithread-
ing adds its own system overhead; thus multithreading is not
always desirable. In general, the goal is to ensure that the
prepare stage starts at the beginning of VSYNC pulse to
maintain a smooth animation sequence and the corresponding
frame-to-frame displacement. In several embodiments, if the
combined time to effectuate the prepare stage and rendering
stage of the Ul workload is small enough to be completed
withina VSYNC cycle (e.g., 16.66 ms for 60 Hz panel refresh
rate) multithreading is not utilized, and in many embodi-
ments, the Ul workload may be selectively multithreaded
based on heuristics. In one exemplary embodiment, the
threshold is one half of the VSYNC cycle period so that if the
prepare stage takes more than half the VSYNC cycle
(0.5*VSYNC cycle period), a separate worker thread is uti-
lized for the rendering stage.

Beneficially, on the multicore processor 114, the prepare
stage of frame n+1 can always execute in parallel to the
rendering stage of previous frame n. As a consequence, the
system CPU governor need not be relied upon to run the
processor 114 cores 116 at turbo/high frequency instanta-
neously to handle the sudden increase in the workload.

10

15

20

25

30

35

40

45

50

55

60

65

6

Instead, the workload is split when necessary to allow the
workload to complete on different cores 116 which can run at
lower clock frequencies; thus there may be power savings in
some instances.

Referring to FIG. 5, shown is a block diagram depicting
exemplary physical components that may be used in connec-
tion with realizing the components depicted in FIG. 1. As
shown, a camera actuator 510, display portion 512, and non-
volatile memory 520 are coupled to a bus 522 that is also
coupled to random access memory (“RAM™) 524, a process-
ing portion (which includes N processing components) 526,
and a transceiver component 428. Although the components
depicted in FIG. 5 represent physical components of a mobile
computing device (such as the computing device depicted in
FIG. 1) it is notintended to be a hardware diagram; thus many
of the components depicted in FIG. 5 may be realized by
common constructs or distributed among additional physical
components. Moreover, it is certainly contemplated that other
existing and yet-to-be developed physical components and
architectures may be utilized to implement the functional
components described with reference to FIG. 1.

In general, the nonvolatile memory 420 functions to store
(e.g., persistently store) data and executable code including
code that is associated with the functional components
depicted in FIG. 1. In some embodiments of the mobile com-
puting device depicted in FIG. 1 for example, the nonvolatile
memory 420 includes bootloader code, modem software,
operating system code, file system code, and non-transitory
processor executable instructions to implement the workload
detection component 118 and the workload division compo-
nent 120 (in addition to the applications 102, other libraries
106, and the kernel 108).

In many implementations, the nonvolatile memory 520 is
realized by flash memory (e.g., NAND or ONENAND™
memory), but it is certainly contemplated that other memory
types may be utilized as well. Although it may be possible to
execute the non-transitory code from the nonvolatile memory
520, the executable code in the nonvolatile memory 520 is
typically loaded into RAM 524 and executed by one or more
of the N processing components in the processing portion
526.

The camera actuator 510 in the embodiment depicted in
FIG. 5 may be realized by a variety of different types of
actuators including voice coil motor (VCM) type actuators,
piezoelectric actuators, hybrid actuators, and yet-to-be-de-
veloped actuators.

The N processing components 526 in connection with
RAM 524 generally operate to execute the instructions stored
in nonvolatile memory 520 to effectuate the functional com-
ponents depicted in FIG. 1. As one of ordinarily skill in the art
will appreciate, the processing components 526 may include
multiple processor cores (e.g., cores 116) a video processor,
modem processor, DSP, graphics processing unit (GPU), and
other processing components.

The depicted transceiver component 528 includes N trans-
ceiver chains for communicating with external devices. Each
of'the N transceiver chains represents a transceiver associated
with a particular communication scheme. For example, one
transceiver chain may operate according to wireline proto-
cols, another transceiver may communicate according to
WiFi communication protocols (e.g., 802.11 protocols),
another may communicate according to cellular protocols
(e.g., CDMA or GSM protocols), and yet another may oper-
ate according to Bluetooth protocols. Although the N trans-
ceivers are depicted as a transceiver component 528 for sim-

US 9,177,352 B2

7

plicity, it is certainly contemplated that the transceiver chains
may be separately disposed about the mobile computing
device.

This display 512 generally operates to provide text and
non-text content (e.g., Ul animations) to a user. Although not
depicted for clarity, one of ordinary skill in the art will appre-
ciate that other components including a display driver and
backlighting (depending upon the technology of the display)
are also associated with the display 512.

The architecture depicted in FIG. 5 is exemplary only and
one or more of the various illustrative logical blocks, mod-
ules, and circuits described in connection with the embodi-
ments disclosed herein may be implemented or performed
with a general purpose processor, a digital signal processor
(DSP), an application specific integrated circuit (ASIC), a
field programmable gate array (FPGA) or other program-
mable logic device, discrete gate or transistor logic, discrete
hardware components, or any combination thereof designed
to perform the functions described herein. A general purpose
processor may be a microprocessor, but in the alternative, the
processor may be any conventional processor, controller, or
microcontroller. A processor may also be implemented as a
combination of computing devices, e.g., a combination of a
DSP and a microprocessor, a plurality of microprocessors,
one or more microprocessors in conjunction with a DSP core,
or any other such configuration.

The steps of amethod or algorithm described in connection
with the embodiments disclosed herein may be embodied
directly in hardware, in a software module executed by a
processor, or in a combination of the two. A software module
may reside in RAM memory, flash memory, ROM memory,
EPROM memory, EEPROM memory, registers, hard disk, a
removable disk, a CD-ROM, or any other form of storage
medium known in the art. An exemplary storage medium is
coupled to the processor such the processor can read infor-
mation from, and write information to, the storage medium.
In the alternative, the storage medium may be integral to the
processor. The processor and the storage medium may reside
in an ASIC. The ASIC may reside in a user terminal. In the
alternative, the processor and the storage medium may reside
as discrete components in a user terminal.

The previous description of the disclosed embodiments is
provided to enable any person skilled in the art to make or use
the present invention. Various modifications to these embodi-
ments will be readily apparent to those skilled in the art, and
the generic principles defined herein may be applied to other
embodiments without departing from the spirit or scope of the
invention. Thus, the present invention is not intended to be
limited to the embodiments shown herein but is to be
accorded the widest scope consistent with the principles and
novel features disclosed herein.

What is claimed is:
1. A method for processing user-interface animations on a
computing device, the method comprising:

processing a first frame of a user-interface animation with
a first processing core;

monitoring an elapsed processing time of the first frame of
the user-interface animation relative to a first synchro-
nization pulse;

processing, if the elapsed processing time exceeds a thresh-
old, a first portion of the first frame with the first pro-
cessing core and processing a second portion of the first
frame with a second processing core; and

initiating, at substantially a same time as a second synchro-
nization pulse, processing of a next frame of the user-

10

20

30

35

40

45

50

55

65

8

interface animation with the first processing core while
the second processing core is processing the second
portion of the first frame.
2. The method of claim 1, wherein the user-interface ani-
mation is an Android-based user-interface animation and the
second portion of the user-interface animation is a render-
stage.
3. The method of claim 1, wherein the threshold is one-half
of a time period of the synchronization pulse.
4. The method of claim 1, wherein the threshold is a tunable
threshold.
5. The method of claim 1, wherein the monitoring includes
monitoring the elapsed processing time with a workload
detection component implemented in connection with a user-
level library.
6. The method of claim 1, wherein processing the first
portion includes managing user-interface elements, frame-to-
frame displacement calculation, and recording graphics
library commands.
7. The method of claim 6, wherein processing the second
portion includes executing recorded graphics library com-
mands.
8. A non-transitory, tangible processor readable storage
medium, encoded with processor readable instructions to per-
form a method for processing user-interface animations, the
method comprising:
processing a first frame of a user-interface animation with
a first processing core;

monitoring an elapsed processing time of the first frame of
the user-interface animation relative to a first synchro-
nization pulse;

processing, if the elapsed processing time exceeds a thresh-

old, a first portion of the first frame with the first pro-
cessing core and processing a second portion of the first
frame with a second processing core; and

initiating, at substantially a same time as a second synchro-

nization pulse, processing of a next frame of the user-
interface animation with the first processing core while
the second processing core is processing the second
portion of the first frame.

9. The non-transitory, tangible processor readable storage
medium of claim 8, wherein the user-interface animation is an
Android-based user-interface animation and the second por-
tion of the user-interface animation is a render-stage.

10. The non-transitory, tangible processor readable storage
medium of claim 8, wherein the threshold is one-half ofa time
period of the synchronization pulse.

11. The non-transitory, tangible processor readable storage
medium of claim 8, wherein the threshold is a tunable thresh-
old.

12. The non-transitory, tangible processor readable storage
medium of claim 8, wherein the processor readable instruc-
tions, when executed, implement a workload detection com-
ponent that operates in connection with a user-level library.

13. The non-transitory, tangible processor readable storage
medium of claim 8, wherein processing the first portion
includes managing user-interface elements, frame-to-frame
displacement calculation, and recording graphics library
commands.

14. The non-transitory, tangible processor readable storage
medium of claim 13, wherein processing the second portion
includes executing recorded graphics library commands.

15. A computing device comprising:

means for processing a first frame of a user-interface ani-

mation with a first processing core;

US 9,177,352 B2
9

means for monitoring an elapsed processing time of the
first frame of the user-interface animation relative to a
first synchronization pulse;

means for processing, if the elapsed processing time

exceeds a threshold, a first portion of the first frame with 5
the first processing core and a second portion of the first
frame with a second processing core; and

means for initiating, at substantially a same time as a sec-

ond synchronization pulse, processing of a next frame of
the user-interface animation with the first processing 10
core while the second processing core is processing the
second portion of the first frame.

16. The computing device of claim 15, wherein the user-
interface animation is an Android-based user-interface ani-
mation and the second portion of the user-interface animation 15
is a render-stage.

17. The computing device of claim 15, wherein the thresh-
old is one-half of a time period of the synchronization pulse.

18. The computing device of claim 15, wherein the thresh-
old is a tunable threshold. 20

19. The computing device of claim 15, wherein the moni-
toring includes monitoring the processing time with a work-
load detection component implemented in connection with a
user-level library.

25

